Акции IT-компаний
Apple - $236.87
Google - $185.43
Facebook - $725.38
Amazon - $228.93
Microsoft - $409.04
Yandex - $48.44
Netflix - $1027.31
Последняя, в свою очередь, может изменяться в результате воздействия на нее со стороны двух первых компонентов исследуемой системы, а степень такого изменения значительно определяется принятой технологией работ.
Таким образом, подтверждается необходимость представления исследуемого объекта как сложной человекомашинной системы.
Важное место в исследовании безопасности принадлежит формализации и моделированию различных аспектов. Моделирование является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемых для принятия решений в различных сферах инженерной деятельности, в том числе и в области обеспечения безопасности технологических процессов.
Главные требования к моделированию процессов в человекомашинной системе заключаются в необходимости учета их особенностей и цели исследования. Применительно к безопасности, они должны состоять в следующем: системность (учет лишь наиболее существенных факторов аварийности и травматизма), сочетание возможностей описания и оценивания их характеристик, использование таких языков моделирования и алгоритмов, которые – не велики по алфавиту, но в то же время достаточны для семантического представления исследуемых категорий. Желательно, чтобы они были доступны, по возможности, как заказчику, так и пользователю, а также пригодны для средств электронно-вычислительной техники.
Наиболее удовлетворяющими данным требованиям могут являться модели, представляющие процесс появления отдельных предпосылок и развития их в причинную цепь происшествия в виде соответствующих диаграмм причинно-следственных связей – диаграмм влияния.
В последние годы интенсивно разрабатываются диаграммы влияния из класса семантических или функциональных сетей, которые являются графами, но с дополнительной информацией, содержащейся в их узлах и дугах (ребрах). Из них наиболее пригодны для исследования возникновения и предупреждения происшествий, так называемые функциональные сети типа PERT и GERT.
Достоинства таких сетей – возможность объединения логических и графических способов представления исследуемых процессов, учет стохастичности информации, выраженной узлами и дугами, доступность для моделирования циклических и многократно наблюдаемых событий, наибольшие (по сравнению с другими типами диаграмм, например, дерево событий, дерево отказов) логические возможности – в смысле строгости, компактности и простоты корректировки условий наблюдения моделируемых событий и процессов [1].
Функциональные сети GERT и их модификации обладают стохастической структурой, что достигается присвоения узлам логических функций, а связям между ними – случайности их реализации, активности или соблюдения другого условия [2]. Для завершения исследуемого процесса или появления интересующего события необходимо реализовать определенную совокупность узлов и дуг, достаточную для их наблюдения. В тех случаях, когда требуемый для перехода ресурс является случайной величиной, каждая конкретная реализация сопровождается выбором его нового значения – в соответствии с заданным конкретной связью вероятностным или возможностным распределениями.
Сети GERT имеют в общем случае четыре типа узлов (источник, сток, метка и статистика), каждая пара которых является ориентированной ветвью с определенным числом степеней свободы. Характеристики символов, используемых в диаграммах сети GERT, приведены в таблице 1.
В отличие от графов и деревьев, узлы сети GERT могут характеризоваться числом степеней свободы, которые обычно указывают на количество непосредственно им предшествующих (инцидентных) условий, необходимых для реализации конкретного узла.
С целью пояснения одного из возможных принципов статистического и имитационного моделирования процесса возникновения происшествия приведем пример реального события, происшедшего в НГЧ – 4 Свердловск – пассажирский.
23.11.01 года слесарь этой организации - 46 лет, стаж работы по профессии 2 года, при устранении аварии на теплотрассе в подвале дома смертельно травмирован электротоком. Обстоятельства случая следующие, слесарь попытался включить освещение подвала и оказался под напряжением в результате плохой изоляции электропроводки. При этом слесарь стоял на полу, залитым водой. Работы производились в одно лицо.
В результате проведенного анализа можно выделить следующие основные причины, приведшие к электротравме: неправильные действия обслуживающего персонала, которые связаны с недостаточной обученностью, нарушением технологии безопасного ведения работ – работал в одно лицо, неудовлетворительным проведением инструктажа перед выполнением работ в помещениях особоопасных; отсутствие контроля изоляции электрооборудования в подвале; применение для питания электрооборудования в подвале напряжения 220 В вместо допустимых, в данном случае, 12 В.
В этом случае диаграмма причинно-следственных связей будет выглядеть следующим образом:
Сеть GERT выглядит следующим образом:
Рисунок 2 – Сеть стохастической структуры электротравмы.
Дуги данной сети обозначают следующие ситуации:
1-2 – Работник вошел в помещение с аварийным состоянием электрооборудования;
2-3 – Напряжение в сети освещения помещения 220 В;
2-4 – Напряжение в сети освещения помещения 12 В;
2-7 – Работа производится без инструктажа и допуска;
3-5 – В сети освещения нарушена изоляция;
5-6 – Присутствие токопроводящего пола (пол залит водой);
6-10 – Устройство защитного отключения не срабатывает;
7-8 – Работа производится в одно лицо;
8-6 – Обращение к неисправному электрооборудованию;
4-6 – Фактор опасного воздействия электрического тока отсутствует.
Для определения вероятности наступления конкретного события сети – Q, математического ожидания – M[T] и дисперсии времени до его появления – D[T], проведем упрощение исходной модели, путем объединения последовательных и параллельных контуров в единственную ветвь с эквивалентными исходными параметрами Pij, Mij(S) и их преобразованием Wij*(S) – коэффициентом пропускания динамической системы.
Общее выражение для передаточной функции сети будет иметь следующий вид:
где a – количество минимальных пропускных сочетаний внутри графа;
Di – число дуг, соединяющих узлы графа в i-ом сочетании;
Pij – вероятность передачи сигнала (перехода индикатора) между j-ми дугами графа в конкретных i-ых сочетаниях.
Для расчета вероятности появления происшествий установим все пропускные сочетания:{1.2.3.5.6.10}, {1.2.4.6.10}, {1.2.7.8.9.6.10}. Если проанализировать все возможные ситуации в нашем случае и задаться вероятностями событий, то выражение для передаточной функции графа (коэффициента пропускания сети GERT) можно выразить через формулу:
Q=WE(S)S=0=P12.P23.P35.P56.P610 + P12.P24.P46.P610 + P12.P27.P78.P89.P96. P610
Значение математического ожидания времени возникновения аварийной ситуации и его дисперсию находим из первой и второй производных выше приведенной формулы:
Вероятности событий, связанных с действием человека-оператора и надежностью работы технических устройств, в том числе и защитных средств в электроустановках, можно взять из специальных справочников. Полученные расчеты позволят в дальнейшем моделировать аналогичные и более сложные случаи взаимодействия в человеко-машинной системе
Литература:
Павлов В.В. старший преподаватель каф. БЖД, УрГУПС